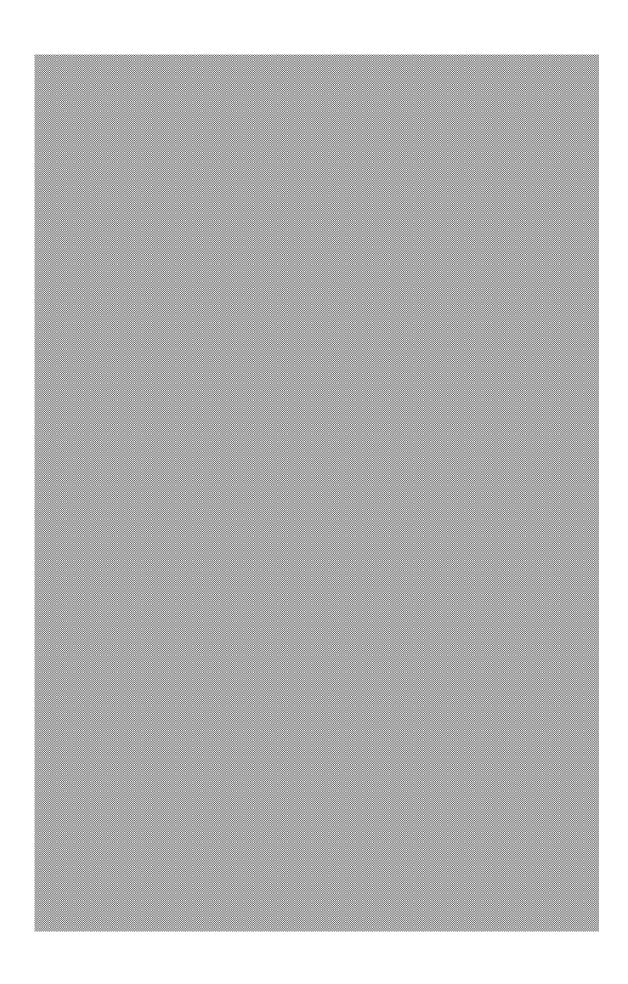
東京都職員(農業技術I類B)採用選考試験問題

令和6年1月13日実施


指示があるまで開いてはいけません。

専 門

- 1 問題用紙及び解答用紙の所定欄に、受験番号と氏名を記入してください。
- 2 試験時間は120分間です。
- 3 問題は全部で7ページ、大問3題です。
- 4 問題ⅡとⅢについては、問題文で指定する問題数を解答してください。また、選択した問題番号を各解答用紙の【選択番号】欄に必ず記入してください。
- 5 解答は必ず解答用紙に記入してください。問題用紙に記入しても正答と認めません。
- 6 解答を訂正するときは、消しゴムできれいに消してから新しい解答を記入してください。
- 7 ※欄には記入しないでください。
- 8 問題用紙及び解答用紙は、持ち帰ることができません。

職種	受験番号	氏 名
農業技術		

(東京都産業労働局)

問題 I (1)~(10)の文章の空欄に当てはまる語句をそれぞれ①から⑤のなかから解答してください。

(1) 果実は種子を包む [A] やそれ以外の器官が成熟したものであり、成熟した [A] を [B] という。また、柑橘類やカキなど果実の大部分が [B] 以外の器官に由来するものを [D] という。 [D] の代表例として、リンゴやイチゴがあげられるが、その可食部の大部分は [E] 由来の組織である。

	A	В	С	D	Е
1	胚珠	果肉	真果	偽果	花托
2	胚珠	果皮	核果	単果	花托
3	胚珠	果皮	核果	偽果	萼筒
4	子房壁	果肉	真果	単果	萼筒
5	子房壁	果皮	真果	偽果	花托

(2) 植物病原ウイロイドは、ウイルスと異なり [A] を欠く低分子のRN Aで、感染植物の主な病徴は [B] 症状である。わが国で発生している ウイロイド病は 2021 年現在 [C] が確認されており、病名として [D] や [E] などがある。

	A	В	С	D	E
1	外皮タンパク質	わい化	25 種	トマト退緑萎縮病	キク退緑斑紋病
2	外皮タンパク質	腐敗	250 種	トマト退緑萎縮病	キクえそ病
3	自律的複製能力	わい化	250 種	トマトモザイク病	キク退緑斑紋病
4	外皮タンパク質	わい化	25 種	トマトモザイク病	キクえそ病
(5)	自律的複製能力	腐敗	25 種	トマト退緑萎縮病	キクえそ病

(3) 果実吸蛾類は、[A]、[B] などの夜行性蛾類で、ナシ、モモ、カンキツなどの果実に成虫が鋭い[C] を差し込んで加害する。果実は内部がスポンジ状となり、[D] する。防除には効果的な防除薬剤がなく、[E] による夜間照明が有効である。

	A	В	С	D	Е
1	モンシロチョウ	アカエグリバ	毒針	腐敗	青色灯
2	アケビコノハ	アカエグリバ	口吻	腐敗	黄色灯
3	アケビコノハ	アカエグリバ	毒針	肥大	青色灯
4	モンシロチョウ	アカタテハ	口吻	腐敗	黄色灯
(5)	アケビコノハ	アカタテハ	口吻	肥大	青色灯

	A	В	С	D
1	9元素	炭素	窒素	酸性矯正
2	16元素	炭素	硫黄	酸性矯正
3	16元素	炭素	室素	物理性改善
4	16元素	室素	硫黄	物理性改善
(5)	9 元素	室素	硫黄	酸性矯正

(5) [A] ギクは、日長と関係なく花芽分化する。秋ギクは、絶対的短日植物で、花芽分化の限界日長は [B] 品種ほど短くなる。なお、花芽分化後の日長が限界日長より [C] と花芽の発達が抑えられ、つぼみが委縮して正常に開花しない [D] が発生する。秋ギクの花芽分化に必要な最低温度は、晩生品種に比べて早生品種は [E]。

	A	В	С	D	E
1	寒	早生	短い	ブラインド	低い
2	夏	早生	長い	ブラインド	高い
3	夏	晚生	長い	やなぎ芽	高い
4	夏	晚生	短い	やなぎ芽	高い
(5)	寒	晚生	短い	ブラインド	低い

(6) ジャガイモの原産地は [A] である。栽培は、[B] で、水はけのよい土が適する。利用部位は、[C] で、ここに分布する芽はイモの肥大開始後の一定期間、生理的な要因によって成長を停止した状態にある [D] の状態にある。栽培には無病のたねいもを準備し、雨のあたらない場所に広げて [E] を行う。

	A	В	С	D	E
1	中央アメリカ	アルカリ性	塊根	内生休眠	予措
2	アンデス高原地帯	酸性	塊茎	内生休眠	催芽
3	中央アメリカ	酸性	塊根	外生休眠	予措
4	アンデス高原地帯	アルカリ性	塊根	内生休眠	催芽
(5)	北アメリカ	アルカリ性	塊茎	外生休眠	予措

(7)集団育種法とは〔 A 〕育種法の一つであり、〔 B 〕作物における代表的な育種法でもある。〔 C 〕から選抜を始めるため、集団内での〔 D 〕個体比率が増加した状態で選抜が行われることになる。このため、系統育種法と比較すると、播種や選抜に要する労力や経費が 〔 E 〕すると言われている。

	A	В	С	D	Е
1	分離	他殖性	世代を進めて	ヘテロ	増加
2	交配	自殖性	世代を進めて	ホモ	減少
3	交配	自殖性	初期世代	ヘテロ	増加
4	分離	自殖性	初期世代	ヘテロ	減少
5	交配	他殖性	世代を進めて	ホモ	減少

(8) GAPとは、農業生産[A]管理の略称であり、農業生産の各[A] の実施、記録、[B]及び評価を行うことによる持続的な改善活動の取組である。農林水産省では、「食品安全」、「環境保全」、「「 C 」〕、「人権保護」、 [「 D 」〕の5分野を含むGAPを国際水準GAPと呼称し、ガイドラインを策定し普及を推進している。

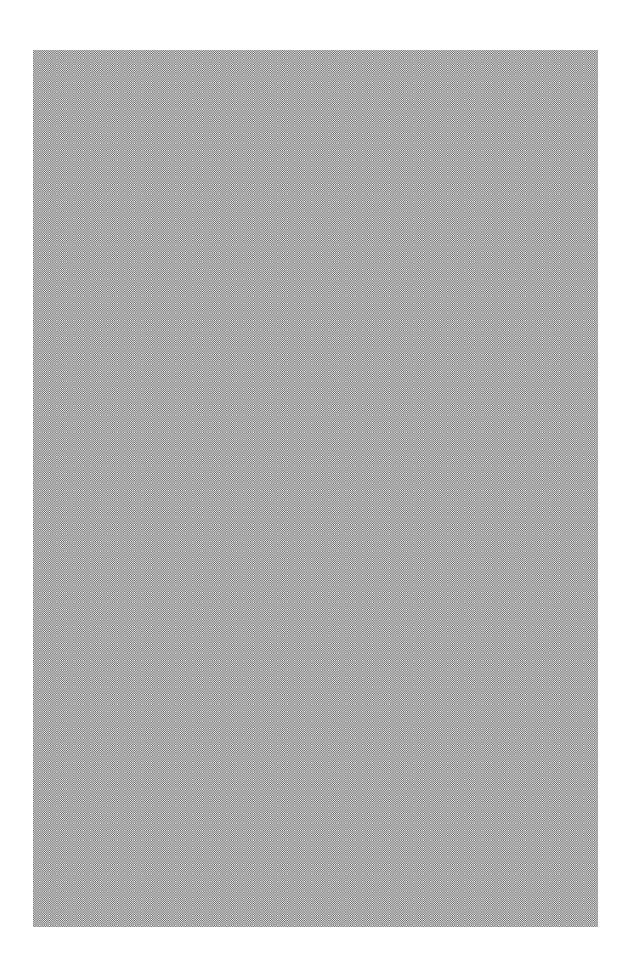
	A	В	С	D
1	手順	点検	労働安全	農場管理
2	工程	点検	健康安全	農場管理
3	手順	検査	健康安全	農場経営管理
4	工程	検査	労働安全	農場経営管理
(5)	工程	点検	労働安全	農場経営管理

(9)食料・農業・農村基本法は、制定から約〔 A 〕年が経過し、現在見直しに向けた議論が進められている。令和5年9月に食料・農業・農村政策審議会がとりまとめた答申では、ウクライナ侵攻などを背景に、国民一人一人の〔 B 〕の確立を提起した。基本的な施策として、生産コストの〔 C 〕を踏まえ、適正な価格形成に向けた食料システム全体の仕組みの構築や、生産性の向上に向けた〔 D 〕農業の導入が盛り込まれた。また、〔 E 〕的に農業に取り組む多様な人材の育成や、持続可能な農業への転換等も掲げられ、今後、国では法改正に向けて具体的な施策の検討が行われる。

	A	В	С	D	E
1	30	食料安全保障	低下	スマート	副業
2	20	食料安全保障	上昇	大規模	主業
3	20	輸入食品拡大	低下	スマート	主業
4	30	輸入食品拡大	上昇	大規模	主業
(5)	20	食料安全保障	上昇	スマート	副業

(10) 2023 年の夏は地球温暖化の影響で飛び抜けた暑さが続いた。統計を開始して以来、日本の平均気温偏差は過去最高を記録し、2023 年の日本の夏の平均気温偏差は〔A〕となった。これは、日本の上空で西から東に向かって吹いている〔B〕が、2023 年の夏は蛇行して、いつもより北側を吹くようになり、南の温かい空気が北に押し上げられたことと南米ペルー沖の海面水温が高くなる〔C〕が発生したことが要因と言われている。また、夏場の猛暑により水稲では、登熟期の高温による〔D〕が発生した。

	A	В	С	D
1	+1.08	貿易風	エルニーニョ現象	白未熟粒
2	+1.08	貿易風	ラニーニャ現象	胴割れ米
3	+1.08	偏西風	エルニーニョ現象	胴割れ米
4	+1.76	偏西風	ラニーニャ現象	胴割れ米
(5)	+1.76	偏西風	エルニーニョ現象	白未熟粒


問題Ⅱ 次の設問の中から<u>2題を選び</u>、解答してください。(各 400 字程度)

- ① 種子植物の単為結果について簡単に説明し、この現象を利用した栽培例を 2つ以上あげなさい。【植物生理】
- ② 農作物に発生するさび病菌による病害を異なる作物で2種類あげ、それぞれ病名、病徴、発生生態、防除対策などについて述べよ。【植物保護】
- ③ 土壌の塩類集積について説明するとともに、その回避策などについて述べよ。【土壌肥料】
- ④ 果樹栽培における、せん定の目的、手順や留意点について述べよ。 【園芸】
- ⑤ DNAマーカーについて説明し、DNAマーカーを選抜育種に用いた時の 利点を説明しなさい。【植物育種】
- ⑥ 農業経営における規模拡大の有利性について、利点を3つ以上あげ、説明しなさい。【農業経営】

問題Ⅲ 次の設問のうち、どちらか1題を選び解答してください。(800字程度)

- ① 東京農業振興プランが、令和5年3月に改定されました。今後、東京農業の振興を図るための課題を3つあげ、その対応として、東京都が取り組むべき施策について、あなたの考えを述べなさい。
- ② 肥料や飼料など生産資材の価格が高騰する中、我が国の農業経営を安定化するための課題を挙げ、どのような取組を進めるべきか、あなたの考えを述べなさい。

下書き用紙 (ご自由にご使用ください。)

(1)	5
(2)	1
(3)	2
(4)	1
(5)	3
(6)	2
(7)	2
(8)	5
(9)	5
(10)	5